Abstract

The second self-diffusion and viscosity virial coefficients of the Lennard-Jones (LJ) fluid were calculated by a detailed evaluation of the velocity and shear-stress autocorrelation functions using equilibrium molecular dynamics simulations at low and moderate densities. Accurate calculation of these coefficients requires corresponding transport coefficient values with low degrees of uncertainty. These were obtained via very long simulations by increasing the number of particles and by using the knowledge of correlation functions in the Green-Kubo method in conjunction with their corresponding generalized Einstein relations. The values of the self-diffusion and shear viscosity coefficients have been evaluated for systems with reduced densities between 0.0005 and 0.05 and reduced temperatures from 0.7 to 30.0. This provides a new insight into the transport coefficients beyond what can be offered by the Rainwater-Friend theory, which has not been developed for the self-diffusion coefficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call