Abstract

The solvent drag reflection coefficient (sigma) for total proteins can be estimated by comparing the relative degrees of concentration of erythrocytes and plasma proteins that occur during fluid filtration in an isolated perfused organ. In this analysis, we evaluated the accuracy of equations proposed by Pilati and Maron [Am. J. Physiol. 247 (Heart Circ. Physiol. 16): H1-H7, 1984] and Wolf et al. [Am. J. Physiol. 253 (Heart Circ. Physiol. 22): H194-H204, 1987] to calculate sigma from these concentration changes. We calculated sigma with each equation using data generated from a mathematical model of fluid and solute flux in membranes with known sigma's. We found that the equation of Wolf et al. provided the closest approximation to the true sigma over the entire range of filtration fractions tested (0.1-0.6), with the differences between the two equations increasing with filtration fraction. At low filtration fractions, the difference in sigma obtained using either approach was found to be inconsequential. At larger filtration fractions, a closer approximation of the true sigma can be obtained using the equation of Wolf et al.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.