Abstract

A method for the calculation of the mean flow past smooth circular cylinders is presented and evaluated. It utilizes an iterative procedure that couples a boundary-layer calculation method, by which the location of separation and the displacement thickness are predicted, and a new two-parameter irrotational-flow model, which predicts the pressure distribution. The displacement effect of the boundary layer is explicitly taken into account in the irrotational-flow model. The location of separation, drag coefficient, and pressure-distribution parameters are predicted at Reynolds numbers as high as 108. The results are compared with experiments in the subcritical and the supercritical flow regimes and with empirically developed design criteria for cylindrical structures at high Reynolds numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.