Abstract

A large number of studies have been dedicated to the interaction of powerful optical radiation with transparent dielectrics in the prebreakdown or breakdown regimes. However, the mechanism by which the material is destroyed has not been determined decisively, as indicated by the constant flow of new publications on this theme. Attempts to obtain destruction as the result of electron avalanche [1] give threshold power values orders of magnitude greater than experiment [2]. In connection with this, in recent years the accent has been to deal with the concept of microimpurities of foreign particles or inhomogeneities within the medium having dimensions so small that their presence and concentration is difficult to monitor. As it absorbs optical radiation, the microimpurity (inhomogeneity) is heated and warms the areas of the medium adjacent to itself, which areas then commence to absorb light with significantly more intensity than they did in the initial state [3]. As a result, increase in absorption within the medium commences, terminating in breakdown or destruction of the material around the inhomogeneity. In [4, 5] it was noted that an important role may be played in such a destruction mechanism by thermoelastic stresses in the medium, which factor was not considered in [3]. In [4, 5] it was proposed that the basic effect of thermoelastic stresses reduces to development of microfissures in the medium. However, thermoelastic stresses can lead to yet another effect — narrowing of the forbidden zone of the medium and increase (together with the analogous action of temperature growth) in the coefficient of absorption of the medium. In the present study, the kinetics of interaction of optical radiation with a dielectric medium containing spherical metal particles as an impurity will be calculated, and it will be shown that thermoelastic stresses produce a significant contribution to the increase in light absorption by the medium around a particle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.