Abstract

Modern complexly alloyed high-temperature nickel-base alloys contain up to 14 alloying elements. The complex composition ensures fulfillment of strict and often contradictory requirements imposed on the materials of critical parts of gas turbine engines (GTE). However, multi-component alloying creates considerable difficulties in the development of new compositions with specified characteristics or in the optimization of existing alloys. The present work is devoted to calculating the high-temperature strength of nickel alloys by means of the system of nonpolarized ionic radii (SNIR).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.