Abstract

The usual wire rating problem is to compute the permissible conductor current so, that the maximum conductor temperature does not exceed a specified value. When numerical methods are used to determine wire rating, an iterative approach has to be used for this purpose. This is accomplished by specifying a certain conductor current and computing the corresponding conductor temperature. The electrical fuse rating problem is to calculate the melting behavior and to match thermo‐electrical characteristic of the wire and fuse in a way that the wire is protected by a fuse in wanted time and current range. Up to now the selection of wires is based on data, which were not particular optimized for automotive applications, where the wire length is typically short and low weight is important. The same, electrical fuses today are designed for a certain current value and do not protect the wire reliable in a wider current range. So, for automobile applications, fuses have to be re‐designed for every single wire to protect it against short circuit currents. Thus, the investigation of thermo‐electrical characteristics of both wires and fuses is necessary. This paper would like to show some examples how to calculate heat transfer in cylindrical wires (cable rating) and electrical fuses (melting behavior) by implicit Finite Volume Method (FVM) [12]. Such a procedure allows us to obtain simple algorithm to investigate thermo‐electrical behavior of electrical conductors. The key part of the paper is the calculation of the heat transfer by implicit Finite Volume Method. In non‐stationary state 1‐D heat conduction equation is solved for both cylindrical and orthogonal coordinates. In stationary state analytical solutions are presented.

Highlights

Read more

Summary

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call