Abstract

During the discharging of Tokamak devices, interactions between the core plasma and plasma-facing components (PFCs) may cause exorbitant heat deposition in the latter. This poses a grave threat to the lifetimes of PFCs materials. An infrared (IR) diagnostic system consisting of an IR camera and an endoscope was installed on an Experimental Advanced Superconducting Tokamak (EAST) to monitor the surface temperature of the lower divertor target plate (LDTP) and to calculate the corresponding heat flux based on its surface temperature and physical structure, via the finite element method. First, the temperature obtained by the IR camera was calibrated against the temperature measured by the built-in thermocouple of EAST under baking conditions to determine the true temperature of the LDTP. Next, based on the finite element method, a target plate model was built and a discretization of the modeling domain was carried out. Then, a heat conduction equation and boundary conditions were determined. Finally, the heat flux was calculated. The new numerical tool provided results similar to those for DFLUX; this is important for future work on related physical processes and heat flux control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.