Abstract

Abstract Density functional theory (DFT) was used to calculate the bulk electronic and optical properties of indium tin oxide (ITO). The ITO model was constructed replacing indium atoms with tin atoms in the cubic unit cell of indium oxide. To allow more possibilities for tin atom substitution than afforded by the forty-atom primitive cell of indium oxide all eighty atoms of the unit cell were included in the stoichiometry (In32−xSnxO48) using periodic boundary conditions. A number of properties of ITO were calculated including the optical band gap, charge carrier density and plasma frequency. The dependence of the electronic and optical properties of ITO on a variety of parameters such as the tin content, cubic lattice parameter and the distance between adjacent tin atoms was investigated. The electronic and optical properties agreed well with experimental data and allowed insight into the origin of the electronic and optical properties of ITO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call