Abstract

A method was developed for calculating the decision thresholds for gamma-ray spectrometric measurements. At the energies where gamma-ray emitters that are present in the nuclide library, but were not identified in the spectrum, radiate, peaks are supposed to appear. The peak areas are calculated by fitting, using the method of least squares, the spectral region of the supposed peaks with a continuous background and the spectrometer response function at the gamma-ray energies where the supposed peaks are positioned. The null measurement uncertainty of a gamma-ray emitter is obtained as the uncertainty of the weighted average of the activities calculated from the areas of the supposed peaks in a spectrum where the specified activity of the gamma-ray emitter is zero. For the calculation of the decision threshold the null measurement uncertainty is used. These decision thresholds overestimate the critical limits calculated with the Currie formula by about 10% in the case of single gamma-ray emitters. For multi-gamma-ray emitters the decision thresholds yield smaller values than the Currie formula. The presence of a peaked background or peaks that are near the supposed peaks increases the decision threshold considerably.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call