Abstract

The aim of the work is to obtain generalized simple formulas for calculating the coefficient of thermal conductivity of snow cover when calculating its thermal resistance. To achieve the goal, a comparison was made of the parabolic formula of N.I. Osokin, obtained on the basis of generalization and correlation analysis of existing dependencies for calculating the coefficient of thermal conductivity having fractional coefficients, with its simplified version with integer coefficients. Based on the linearization of the base Simple linear formulas for determining the coefficient of thermal conductivity depending on the density of snow for two characteristic density ranges (200-300) and (300-400) kg/m3 were also obtained. The percentage errors in the calculations of the coefficient of thermal conductivity of snow, which are possible with the simplification of the coefficients and linearization of the basic parabolic dependence of the coefficient of thermal conductivity on the density of the snow cover, are determined. It is established that the errors arising from the linearization of the basic function do not exceed 5%, which is quite acceptable in engineering calculations. The discrepancy between the results of calculations according to the basic and simplified formula (with coefficients rounded to integer values of the first order) does not exceed 1.5% in the entire considered range of changes in snow density. The results of numerical calculations are presented in the form of graphs that allow you to visually assess the impact of simplifying the calculation formula and its linearization on the accuracy of determining the coefficient of thermal conductivity of snow cover.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.