Abstract

With the advent of more powerful computers, the question of calculating thermodynamic quantities, such as the energy and the entropy, in solute-solvent systems is revisited. The calculation of these thermodynamic quantitites was limited in the past by their slow convergence relative to the free energy. Using molecular dynamics simulations, the energy, entropy, and free energy of solvation of NMA and CH(3)NH(2), as well as their relative values, have been determined. Three different methods (the thermodynamic perturbation method, the thermodynamic integration method, and a finite-difference method) are compared. The finite difference method gives the best results and accurate values for the entropy and energy were obtained using a reasonable amount to computer time. The results suggest that a meaningful thermodynamic description of biomolecular processes can be realized with present methods and the available computer time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.