Abstract

Neutron transport simulations have been carried out to calculate the absolute detection efficiency of a moderated 235U neutron detector which is used on the TFTR as part of the primary fission detector diagnostic system for measuring fusion power yields. Transport simulations provide a means by which the effects of variations in various shielding and geometrical parameters can be explored. These effects are difficult to study in calibration experiments. The calculational model, benchmarked against measurements, can be used to complement future detector calibrations, when the high level of radioactivity resulting from machine operation may severely restrict access to the tokamak. We present a coupled forward-adjoint algorithm, employing both the deterministic and Monte Carlo sampling methods, to model the neutron transport in the complex tokamak and detector geometries. Sensitivities of the detector response to the major and minor radii, and angular anisotropy of the neutron emission are discussed. A semiempirical model based on matching the calculational results with a small set of experiments produces good agreement (± 15%) for a wide range of source energies and geometries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call