Abstract

We present a recipe for the calculation of the optical properties of Ce3+-doped systems. The model implies the use of ligand field phenomenology in conjunction with Density Functional Theory (DFT). The particular procedures enable the reliable prediction of the 4f1→4f05d1 transitions in Cs2NaYCl6:Ce3+. The analysis of the doping of Ce3+ into the host is accomplished by band structure calculations. The calculated multiplet energy levels are in agreement with the experimental observation, the outlined treatment being, to the best of our knowledge, unprecedented clear and conclusive application of DFT for the rather complex problems of structure and spectroscopy of cerium-doped systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call