Abstract
Two equations typically used for the pure-solid fugacity proved to be identical by selecting an appropriate relation for the pure-solid vapor pressure and the pure-liquid vapor pressure. On the basis of the pure-solid fugacity, a semipredictive model using solubility data (SMS) and a calculation model combining with GE models (CMG) were developed to calculate the solid−liquid−gas (SLG) coexistence lines of pure substances in the presence of CO2. For the SMS model, the Peng−Robinson equation of state (PR-EoS) with the van der Waals one-fluid mixing rule is used to correlate the solute solubility in CO2 to obtain the interaction parameter k12, which is further employed to predict the SLG coexistence lines by two methods: one adopts the fugacity coefficient of the solute in the liquid phase by an equation of state calculation (SMS-φ); the other uses the activity coefficient of the solute in the liquid phase calculated from the UNIFAC model (SMS-γ). For the CMG model, the PR-EoS with the linear combination of...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.