Abstract

Rapid phase transitions occurring with a sharp increase in a specific volume can be accompanied by explosive gas-dynamic phenomena. A model is presented for calculating shock waves generated in the atmosphere during an explosion of a liquid gas pressure reservoir, based on the assumption of a thermodynamically equilibrium state of a vapor–liquid mixture in which both vapor and liquid have equal velocities and are in a state of saturation at local pressure. The spherically symmetric expansion of a boiling liquid cloud is calculated, pressure profiles under various initial conditions are compared, and the primary shock wave parameters are validated according to the results of available experimental data. Two-dimensional calculations of shock waves during the fracture of a cylindrical tank near the underlying surface at various degrees of filling are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.