Abstract

A new grid generation method for the computation of shallow water flows is presented. The procedure, based on the use of cut cells on a Cartesian background mesh, can cope with shallow water problems having arbitrarily complex geometries. Although the method provides a fully boundary-fitted capability, no mesh generation in the conventional sense is required. Solid regions are simply cut out of a background Cartesian mesh with their boundaries represented by different types of cut cell. For the flow calculations a multi-dimensional high resolution upwind finite volume scheme is used in conjunction with an efficient approximate Riemann solver to deal with complex shallow water problems involving steady or unsteady hydraulic discontinuities. The method is validated for several test problems involving unsteady shallow water flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.