Abstract

Perturbation analysis is an efficient approach to estimating the sensitivities of the performance measures of a queueing network. A new notion, called the realization probability, provides an alternative way of calculating the sensitivity of the system throughput with respect to mean service times in closed Jackson networks with single class customers and single server nodes (Cao (1987a)). This paper extends the above results to systems with finite buffer sizes. It is proved that in an indecomposable network with finite buffer sizes a perturbation will, with probability 1, be realized or lost. For systems in which no server can directly block more than one server simultaneously, the elasticity of the expected throughput can be expressed in terms of the steady state probability and the realization probability in a simple manner. The elasticity of the throughput when each customer’s service time changes by the same amount can also be calculated. These results provide some theoretical background for perturbation analysis and clarify some important issues in this area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.