Abstract

AbstractSensible-heat flux is obviously important for glacier ablation but is difficult to measure routinely. Sensible-heat flux can be estimated from wind-speed and temperature data using a dimensionless heat-transfer coefficient. Values of the heat-transfer coefficient are evaluated for six sites by correlating measured melt energy with a wind–temperature variable (product of daily mean wind speed, temperature and mean atmospheric pressure for the altitude in question). Data are available for short periods from two sites in Arctic Canada and two sites in North Greenland, and for hundreds of days of record at Nordbogletscher and Qamanârssûp sermia in South and West Greenland, respectively. Average transfer coefficients for four out of the six sites are close to 0.003, which is in reasonable agreement with values reported elsewhere, while larger values of 0.0047 and 0.0057 are found at the other two sites. Heat-transfer coefficients are also estimated on a monthly basis for the two long records, and substantial variations are found, suggesting that the method should not be used for <20–30 days of data. The present study is based on manually observed ablation and climate data, but the approach could be updated to use data from automatic recording stations using modern sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.