Abstract

Rolling force is an important technological parameter in designing of the 3700mm cylindrical shell rolling mill. Due to the characteristics of double driving rolls and asynchronous rolling of 3700 mm cylindrical shell rolling mill, the force analysis of the deformation zone is complex. In this study, an analytic method was used to calculate the rolling force. The deformation zone was divided into the forward slip area, the backward slip area and the rub rolling area on the basis of metal flow velocity. The stress equilibrium equations of each area were built. Then the rolling force model of the 3700mm cylindrical shell rolling mill was built and solved, according to the boundary conditions. At the same time, in order to verify the validity of the analysis, the calculated values were compared with the measured in the spot. They have a good agreement, which indicates the calculation accuracy of the model could meet the industry requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call