Abstract

We calculate the stochastic photoluminescence intensity of a single colloidal quantum dot in order to calculate the blinking behaviour of the optical emission. The combination of the long-lived dark state with a lifetime of the order of seconds together with the radiative recombination lifetimes in the nanosecond regime make the stochastic model of the system incredibly computer intensive. The stochastic behaviour of the single quantum dot using a system of rate equations for the probabilities of occupancy of the confined energy levels is calculated. A standard Monte Carlo algorithm is modified by introducing a time step that is dependent on the transitions possible in the state that the system occupies. The model is verified by comparison with the calculation using the standard algorithm and from the calculated probability densities. The improvement in computational time of this algorithm over the standard Monte Carlo method is also determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.