Abstract

For a model system of polyethylene of chain lengths 40 and 100 carbon atoms, we calculated the pressure at different densities and compared them with the experimental values. The simulation was conducted on the second nearest neighbor diamond lattice, and the pressure was calculated using the virtual-volume-variation method after the system was reverse mapped to its fully atomistic form in continuous space and energy minimized. In addition, the pressure was also calculated from the virial route by conducting a short molecular dynamics simulation starting from the energy minimized structure. We show that the pressure obtained from our simulations is quite reasonable in the length of simulation time (in Monte Carlo steps) normally employed in our group. These results provide additional evidence for the equilibration of our model systems, and methodology to calculate the pressure in our lattice models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.