Abstract

The convolution/superposition method was used to predict the dose throughout an extended volume, which includes a phantom and a portal imaging device. From the calculated dose volume, the dose delivered in the portal image plane was extracted and compared to a portal dose image. This comparison aids in verifying the beam configuration or patient setup after delivery of the radiation. The phantoms used to test the accuracy of this method include a solid water cube, a Nuclear Associates CT phantom, and an Alderson Rando thorax phantom. The dose distribution in the image plane was measured with film and an electronic portal imaging device in each case. The calculated portal dose images were within 4% of the measured images for most voxels in the central portion of the field for all of the extended volumes. The convolution/superposition method also enables the determination of the scatter and primary dose contributions using the particular dose deposition kernels for each contribution. The ratio of primary dose to total dose was used to extract the primary dose from the detected portal image, which enhances the megavoltage portal images by removing scatter blurring. By also predicting the primary energy fluence, we can find the ratio of computed primary energy fluence to total dose. Multiplying this ratio by the measured dose image estimates the relative primary energy fluence at the portal imager. The image of primary energy fluence possesses higher contrast and may be used for further quantitative image processing and dose modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.