Abstract
Transonic small disturbance theory is used to solve for the flow past thin airfoils including cases with imbedded shock waves. The small disturbance equations and similarity rules are presented, and a boundary value problem is formulated for the case of a subsonic freestream Mach number. The governing transonic potential equation is a mixed (elliptic-hyperbolic) differential equation which is solved numerically using a newly developed mixed finite difference system. Separate difference formulas are used in the elliptic and hyperbolic regions to account properly for the local domain of dependence of the differential equation. An analytical solution derived for the far field is used as a boundary condition for the numerical solution. The difference equations are solved with a line relaxation algorithm. Shock waves, if any, and supersonic zones appear naturally during the iterative process. Results are presented for nonlifting circular arc airfoils and a shock free Nieuwland airfoil. Agreement with experiment for the circular arc airfoils, and exact theory for the Nieuwland airfoil is excellent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.