Abstract

For the geological sequestration of carbon dioxide to prevent global warming, the phase equilibrium data for water and carbon dioxide mixture play an important role in process design and operation. In this work, the nonrandom lattice fluid equation of state with hydrogen bonding (NLF-HB EOS) was applied for the prediction of phase equilibrium of mixtures containing water and carbon dioxide. A new set of pure component parameters for carbon dioxide above critical condition was found and optimum binary interaction parameters were reported to correlate mutual solubility of mixtures. The calculated results were compared with the Peng-Robinson Equation of State with the conventional mixing rule (PR-EOS) and the Wong-Sandler mixing rule (PR-WS-EOS). The calculation results show that NLF-HB EOS can correlate mutual solubility of water+carbon dioxide mixtures with reasonable accuracy within a single theoretical framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.