Abstract

Two-dimensional cross-sections of the phase envelopes of fluid mixtures—in particular isotherms, isobars, and isopleths—are often computed point-by-point by incrementing a so-called marching variable and solving the equilibrium conditions at each step. The marching variable is usually pressure, temperature, or a mole fraction, depending on the application. These isolines, however, can have rather complicated shapes, so that a simple unidirectional “sweep” of the marching variable often gives merely a part of the desired isoline. It is then necessary to restart the sweep with different initial values, or to switch to another marching variable. This, however, makes it difficult to compute complete isolines automatically, without human interference. We propose here a new marching technique through which it is possible to follow isolines of arbitrary shape and thus to compute complete isolines, as long as they are contiguous.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.