Abstract

Bose system of zero spin particles is considered in the presence of the Bose–Einstein condensate in the vicinity of the phase transition point. The system is investigated in the framework of the Bogolyubov model with the separated condensate. In this model an effective Hamiltonian of the system is introduced by replacing condensate creation and annihilation operators in system Hamiltonian by n01/2 where n0 is occupation number of the condensate state. According to Bogolyubov, the grand canonical thermodynamic potential related to the effective Hamiltonian is considered as nonequilibrium thermodynamic potential. In the present paper this potential is investigated as a function of the small variable n0. With the help of the thermodynamic perturbation theory it is shown that it is expanded in a series over integer powers of n0. This corresponds to the basic idea of the Landau theory of the phase transitions of the second kind. Coefficients at terms of the first and second orders in n0 in the expansion are calculated for Bose gas in the main approximation in small interaction. Calculation of the coefficients at terms of the third and fourth orders needs accounting contributions of the thermodynamic perturbation theory at least of the 4th order and will be done elsewhere. It is established that the results obtained for Bose gas do not fit into the Landau theory of phase transitions of the second kind. Some comments that discuss the situation are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.