Abstract
A transformation of the transverse Coulomb vector potential was implemented to calculate molecular magnetic properties via the random-phase approximation (RPA) within the framework of a “longitudinal gauge.” In this gauge, the diamagnetic contribution to magnetic susceptibility is a tensor with equal diagonal components as in atoms, irrespective of molecular symmetry, whereas diagonal and average diamagnetic contributions to the nuclear magnetic shielding are the same as in the Coulomb gauge. Near-Hartree–Fock magnetic susceptibility and nuclear magnetic shielding tensors were evaluated for a set of small molecules, HF, H2O, NH3, and CH4, employing extended Gaussian basis sets. The peculiar features of the longitudinal gauge, and the fulfillment of a series of sum rules involving the virial operator, which must be satisfied to guarantee gauge invariance of total magnetic tensors, were exploited to check the degree of convergence of theoretical values and to estimate the corresponding Hartree–Fock limit for the properties. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 66: 31–45, 1998
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.