Abstract

The middle ear bones are the smallest bones in the human body and are among the most complicated functionally. These bones are located within the temporal bone making them difficult to access and study. We use the micro-CT imaging modality to obtain quantitative inertial properties of the MIC (malleus-incus complex), which is a subcomponent of the middle ear. The principal moment of inertia of the malleus along the superior-inferior axis (17.3 ± 2.3 mg/mm3) is lower by about a factor of six in comparison to the anterior-posterior and lateral-medial axes. For the incus, the principal moment of inertia along the superior-inferior axis (35.3 ± 6.9 mg/mm3) is lower by about a factor of two than for the other two axes. With the two bones combined (MIC), the minimum principal moment of inertia (132.5 ± 18.5 mg/mm3) is still along the superior-inferior axis but is higher than for the individual bones. The superior-inferior axis inertia is lower by a factor of 1.3 than along the anterior-posterior axis and is lower by a factor 2 along the lateral-medial axis. Values for inertia of the MIC show significant individual differences in three human ears measured, suggesting that middle ear models should be based on individual anatomy. Imaging by micro-CT scanner is a nondestructive modality that provides three-dimensional volume information about middle ear bones at each stage of manipulation with resolution down to 10μm. In this work extraneous tissue is removed to obtain a sufficiently small specimen. However, advances in imaging hold promise that this capability will be available for in vivo measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call