Abstract

A comparison between two analytical models of a free turbulent mixing of reacting streams with finite chemical reaction rates is presented and the results of calculations compared with experimental data. The substance is a mixture of the inert non-dissociated nitrogen and oxygen that dissociates and reacts with hydrogen. For the first model the local values of flow parameters along the streamlines were provided by the numerical solution of the conservation equations in the boundary layer form for a multicomponent mixture of perfect gases in the von Mises coordinate system. In the course of this analysis the problem was treated by dividing the flowfield into a large number of regions and by solving the Cauchy problem of the conservation equations for each region. The second analytical model was based on the ignition delay to describe the chemistry in the region of pre-ignition. The external air stream was heated by combustion and the influence of the water vapor and the intermediate species on the reaction kinetics in the mixing zone was numerically investigated. The results of calculation are compared with the experimental data with respect to the location of a visible flame edge under combustion of hydrogen jet in the co-current flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call