Abstract

Link for citation: Mrakin A.N., Afanaseva O.V., Kuleshov O.Yu. Calculation of heat transfer intensity of gas fuel combustion products. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 2023, vol. 334, no. 5, рр.109-115. The relevance of the research is determined by the modern trend in the field of thermal power engineering and heat engineering for the transition from traditional gaseous fuel (methane) to the use of hydrogen, methane-hydrogen mixtures, as well as thermochemical conversion gases. Switching to new non-design fuel is justified by considerations of reducing the negative impact on the environment and increasing the thermal efficiency of fuel combustion plants. In this case, the use of fuels with a composition different from the design one will affect the heat transfer processes. The main aim: carrying out a comparative analysis of indicators of the intensity of radiant and convective heat transfer of combustion products of non-design fuels, such as hydrogen, methane-hydrogen mixture and thermochemical conversion gases. As an assumption in the formulation of the problem and objectives of the study, the constancy of the heat release power in the apparatus due to changes in the amount of fuel burned was taken. Objects: heat exchange surface of a fire-tube hot water boiler. Methods: carrying out numerical calculation using traditional approaches to determine the indicators of the intensity of heat transfer in the system «combustion products – metal wall of the pipe of thermal power plants». We also used the relations tested earlier by other authors to calculate the thermophysical parameters of gas mixtures. Results. According to the results of the performed comparative calculations, we can conclude that the transition from the use of conventional fuel (natural gas/methane) to its thermochemical conversion gases under the considered conditions has almost no effect on the integral heat transfer performance. To a greater extent, this transition is caused by changes in the intensity of heat transfer for products of combustion of hydrogen and methane-hydrogen mixture, which will affect the operation of thermal power and heat technological installations. At the same time, it is necessary to conduct additional research on the combustion kinetics of thermochemical methane conversion gases, their thermophysical properties, etc., because the hardware design, type of the catalyst used and operating parameters of the process will affect the composition of obtained synthesis gas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call