Abstract

SummaryAn approximate method is presented for the calculation of heat transfer rates to cooled turbine blades. The method is based on a combination and extension of methods which have been developed in recent years for the calculation of the skin friction and heat transfer coefficients on wings in high speed flight. The use of the method is demonstrated by application to a specific cascade for which an experimental determination of overall heat transfer coefficient is known. Very close agreement with the experimental results is found over the range of Reynolds number tested. The calculated distribution of local heat transfer coefficient indicates that local pressure gradients have a marked effect on the heat transfer. A first-order estimate of the effect of blade cooling on the rate of mass flow through a blade passage shows that an increase of the order of one per cent in the mass flow rate may be obtained by a reasonable degree of blade cooling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.