Abstract

The method explained in this paper solves the steady-state of the neutron transport equation for 1D and 2D systems modeled with Cartesian geometry, by using the Discrete Ordinates method SN for the angular discretization and the Finite Difference Method for the spatial discretization. The method applies the multi-group approach for any energy discretization, including upscattering terms. The method solves the steady-state equation by solving a generalized eigenvalue problem by means of a Krylov-Schur method. One of the main advantages of the method is the capability to calculate multiple eigenfunctions. The Discrete Ordinates methodology is used for the angular discretization, which uses a simple formulation involving the angles and direction cosines. The spatial discretization with Finite Difference Method is selected for its simplicity. The method is validated with several one-dimensional benchmark problems and four two dimensional benchmark problems. The results show good agreement with respect to the reference results for all the cases studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call