Abstract

The application of theoretical methods based on density functional theory using hybrid functionals and localized, atomic orbital type basis sets is shown to provide good estimates for exchange coupling constants in non-metallic, solid state transition metal compounds with relatively complex crystal structures. The accuracy of the calculated exchange coupling constants is similar to that previously obtained for dinuclear and polynuclear molecular compounds. As an application of this procedure, the magnetic properties of the high-temperature phase of CuGeO 3, the recently synthesized silver copper oxide Ag 2Cu 2O 3, and the family of M[N(CN) 2] 2 ( M=Cr(II), Mn(II), Fe(II), Co(II), Ni(II) and Cu(II)) compounds are analyzed via the computation of their most relevant exchange coupling constants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.