Abstract

Calculation of the spectra of intermolecular complexes of 3-aminophthalimide is used as an example to show that when hydrogen bonds are present, the resonance integrals for the proton donor and acceptor atoms are different from zero. Theoretical analysis of strained 3-aminophthalimide complexes allowed us to establish the determining role of hydrogen bonds in their formation. Using an intramolecular peptide hydrogen bond as an example, we studied the effect of the solvent on its parameters. In particular, we showed that hydrogen bond formation with a proton-acceptor group of the chelate ring leads to a decrease in the resonance integral, and consequently a decrease in the enthalpy of formation of the intramolecular hydrogen bond, to a significantly greater degree than formation of a hydrogen bond at a proton-donor group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.