Abstract

Most gamma-ray scintillation detectors currently in use are made from inorganic materials that have a relatively high electron density. Quite often they are used to build multidetector systems that provide high scintillation light output. The performance of a gamma radiation detector (its detection efficiency) depends on the shape and size of the crystal, as well as on the source-to-detector geometry used. The NaI(Tl) gamma detector exhibits moderate energy resolution but relatively high gamma-ray detection efficiency and fast time response. In this work, the efficiency and resolution of a scintillation hexagonal detector are studied to optimize its response function. This type and size of scintillator were selected to construct a budget-friendly, reconfigurable, easy-to-maintain multidetector system for registering gamma-rays following fission, capture, and inelastic neutron scattering reactions, with reasonably good energy and time resolutions The research results made it possible to establish a geometric solid angle that increases the efficiency of recording gamma-ray radiation of the hexagonal NaI(Tl) scintillation probe under study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.