Abstract

The study aims to develop a rational polynomial approximation method for improving the accuracy of the effective atomic number calculation with a dual-energy X-ray imaging system. This method is based on a multi-materials calibration model with iterative optimization, which can improve the calculation accuracy of the effective atomic number by adding a rational term without increasing the computation time. The performance of the proposed rational polynomial approximation method is demonstrated and validated by both simulated and experimental studies. The twelve reference materials are used to establish the effective atomic number calibration model, and the value of the effective atomic numbers are between 5.444 and 22. For the accuracy of the effective atomic number calculation, the relative differences between calculated and experimental values are less than 8.5%for all sample cases in this study. The average calculation accuracy of the method proposed in this study can be improved by about 40%compared with the conventional polynomial approximation method. Additionally, experimental quality assurance phantom imaging result indicates that the proposed method is compliant with the international baggage inspection standards for detecting the explosives. Moreover, the experimental imaging results reveal that the difference of color between explosives and the surrounding materials is in significant contrast for the dual-energy image with the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.