Abstract

The symmetry-adapted-cluster (SAC) configuration-interaction (CI) theory was introduced to interpret the non-coplanar symmetric ($e$,$2e$) results. Dyson orbitals derived from the bench-marked SAC CI general-R method were utilized for computing the electron momentum distributions. The corresponding excitation energies and spectroscopic factors can be used to reproduce the ionization spectra. The implementation was demonstrated by examples of ${\mathrm{N}}_{2}$ and ${\mathrm{H}}_{2}$O. The electron momentum distributions calculated using SAC CI method were compared with recent experimental results, as well as the Hartree-Fock and density-functional-theory calculations. The SAC CI method gave the best performance on the description of the experimental momentum distributions. It was found that the electron momentum distributions of Dyson orbitals related to the satellite lines can be notably different from those of their parent orbitals due to the electron correlation in the initial target states. Present work demonstrated that the SAC CI theory is a very useful and accurate tool for interpreting high-resolution electron momentum spectroscopy results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.