Abstract

The gas-phase geometries of neutral, protonated, and deprotonated forms of some biologically important molecules, alanine (Ala), glycine (Gly), phenylalanine (Phe), and tyrosine (Tyr), were optimized using density functional theory at B3LYP/6-311++G(d) and the ab initio HF/6-311++G(d) level of theories. The neutral and different stable ionic states of Ala, Gly, Phe, and Tyr have also been solvated in aqueous medium using polarizable continuum model for the determination of solvation free energies in the aqueous solution. The gas-phase acidity constants of above four molecules have been also calculated at both levels of theories and found that the values calculated at HF/6-311++G(d) method are in good agreement with experimental results. A thermodynamic cycle was used to determine the solvation free energies for the proton dissociation process in aqueous solution and the corresponding pKa values of these molecules. The pKa values calculated at B3LYP/6-311++G(d) method are well supported by the experimental data with a mean absolute deviation 0.12 pKa units. Additionally, the chemical hardness and the ionization potential (IP) for these molecules have been also explored at both the level of theories. The Tyr has less value of chemical hardness and IP at both levels of theories compared with other three molecules, Ala, Gly, and Phe. The calculated values of chemical hardness and IP are decreasing gradually with the substitution of the various functional groups in the side chain of the amino acids. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.