Abstract
Different from dexterous robotic hands, the gripper of heavy forging manipulator is an underconstrained mechanism whose tongs are free in a small wiggling range. However, for both a dexterous robotic hand and a heavy gripper, the force closure condition: the force and the torque equilibrium, must be satisfied without exception to maintain the grasping/gripping stability. This paper presents a gripping model for the heavy forging gripper with equivalent friction points, which is similar to a grasp model of multifingered robot hands including four contact points. A gripping force optimization method is proposed for the calculation of contact forces between gripper tongs and forged object. The comparison between the calculation results and the experimental results demonstrates the effectiveness of the proposed calculation method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.