Abstract

A theoretical conformational analysis has been carried out for the side substituents of a fragment of the molecule for 2,6-carboxymethyl cellulose (a water-soluble cellulose ether), and the frequencies and the potential energy distribution of the normal vibrations have been calculated for the most stable conformers of the ether groups of this fragment in the approximation of the molecular mechanics method. It has been shown that the most stable conformers are those that have the conformations gg, t, g−, g−, g−-for the groups of atoms on the bonds C5-C6, C6-O6, C13-O6, C10-C13, C10-O9 and the conformations g+g−, g+, g−, g−; g+g−, g−, g−, g−; g+g−, g−, g+, t for the groups of atoms on the bonds C2-O2, C11-O2, C7-C11, C7-O8. Comparative analysis of the calculated frequencies and the potential energy distribution of the normal vibrations for 13 of the most stable conformers showed, as in the case of the 2,6-hydroxyethyl cellulose molecule, that the frequencies and modes of the normal vibrations are highly sensitive to conformational transitions in the analyzed spectral region (800–1500 cm−1). The characteristic patterns for the change in the frequencies and modes of the normal vibrations have been established in connection with conformational transitions within both side substituents. The observed conformational lability of the bulky substituents in the cellulose ether molecules and its manifestations in the vibrational spectrum provide a basis for hypothesizing that one of the major mechanisms for the process of their thermal gelation in aqueous solutions is conformational transitions within these substituents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.