Abstract

The Monte Carlo approach is used to calculate carrier mobility in molecular copper phthalocyanine (CuPc) with applied electric field in the range of 0.5 to 20 × 103 kV/cm. Density functional theory (DFT) is employed to derive the molecular interaction between neighboring molecules with various applied electric fields. The result of DFT calculation to evaluate transfer integral that used to calculate hopping rate in the range of applied electric fields. The charge transfer rate between adjacent molecules can be estimated by using the Marcus–Levich–Jortner (MLJ) formalism. The charge is assumed to be localized on the donor and then transferred to the acceptor. Tunneling is modeled by including selected vibration modes at the quantum mechanical level. The result of hopping rate is in ordered of 1015 s-1 for hole hopping in direction of applied electric field on the contrary hopping rate in ordered of 1014 s-1. The result of mobility can be calculated in range of 0.44 - 10.0 cm2/Vs decrease as a function of applied electric field that calculated by simple hopping model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.