Abstract

In this paper, based on Kubo's formula and the QCD low energy theorem, we propose a direct formula for calculating the bulk viscosity of QCD at finite chemical potential μ and zero temperature. According to this formula, the bulk viscosity at finite μ is totally determined by the dressed quark propagator at finite μ. We then use a dynamical, confining Dyson–Schwinger equation model of QCD to calculate the bulk viscosity at finite μ. It is found that no sharp peak behavior of the bulk viscosity at finite μ is observed, which is quite different from that of the bulk viscosity at finite temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.