Abstract

We present in this work the calculation of Bohmian quantum trajectories representing the wave function propagation in a crystal for a focused electron probe in a scanning transmission electron microscope (STEM). The wave function and quantum trajectories are obtained from the calculation of time-dependent Schrödinger equation by fast Fourier transformation multislice algorithm. In our work, the Bohmian quantum trajectories of a scanning probe penetrating a Cu crystal are studied as an example of this calculation scheme. The results help us to better understand the electron diffraction process in a microscopic imaging from a trajectory-based point of view. This Bohmian quantum trajectory method can be used to extend the application of classical Monte Carlo method from the study of electron interaction with amorphous solid to crystalline structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.