Abstract

In this paper, a simple and effective stabilization method for integrating time delay systems using fractional order PD controllers C ( s ) = k p + k d s μ is proposed. The presented method is based on finding the stability regions according to the fractional orders of the derivative element in the range of (0, 2). These regions are computed by using three stability boundaries: Real Root Boundary (RRB), Complex Root Boundary (CRB) and Infinite Root Boundary (IRB). The method gives the explicit formulae corresponding to these boundaries in terms of fractional order PD controller ( PD μ controller) parameters. Thus, the complete set of stabilizing controllers for an arbitrary integrating time delay system can be obtained. In order to demonstrate the effectiveness in solution accuracy and the simplicity of this method, two simulation studies are given. The simulation results indicate that the PD μ controllers can provide larger stability regions than the integer order PD controllers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.