Abstract

The radiopharmaceuticals most commonly used in nuclear medicine are 18F-FDG and 99mTc-DMSA, both of which are administered to paediatric and adult patients using the same time activity coefficient. However, the IAEA recommends specific paediatric dosimetry. The aim of this work (TW) was to estimate the absorbed dose for 18F-FDG and 99mTc-DMSA using two paediatric voxel phantoms (Baby and Child) by Monte Carlo techniques. Biokinetic data for both radiopharmaceuticals were obtained from ICRP 128. In addition, the new time-integrated activity coefficient (TIAC) values from a recent publication were examined for the following organs: Brain, urinary bladder wall, liver, heart wall, and lung. The absorbed dose per injected activity (AD/IA) and effective dose per injected activity (E/IA) values were calculated for both phantoms and the results were compared with simulated data of paediatric phantoms from ICRP 128, MIRDcalc software and available literature. Regarding AD/IA in organs, differences of up to 61% and 115% were found for the Baby phantom and 120% and 167% for the Child phantom using 18F-FDG and 99mTc-DMSA, respectively. For FDG using the new TIAC, a maximum difference of 244% was observed. For E/IA, the maximum differences were 27% and 31% for the Baby and Child phantoms, respectively, for FDG and DSMA. In this study, new dosimetric data were calculated using Baby and Child phantoms and the newly recommended TIAC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call