Abstract
This study introduces a method of calculating a capsizing rate of a ship. The phenomenon ‘capsizing’ is described as a jump of local equilibrium point from that near the upright position of a ship to what describes the upside-down attitude of the capsized ship; the rate of occurrence of such jumps was calculated. The potential function corresponding to the roll restoring moment have two potential wells located at the roll displacement angle 0 and 180°, respectively. A nonlinear Fokker–Planck equation for the joint probability density function of roll angle and velocity was solved. The excitation to the ship was assumed to be a combination of a regular harmonic wave and a white noise process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.