Abstract

For a medium air-cooled asynchronous motor, the physical model of cooling air inside the motor was established to research the air flow distribution and characteristics of the internal flow of the medium motor. By the finite volume method according to the computational fluid mechanics (CFD) principle, the three-dimensional turbulent flow field in computational domain was simulated numerically using boundary conditions of the pressure inlet and outlet obtained from engineering calculations. From the result, the thermal field of stator and rotor was calculation. The results show that the wind speed of cooling air duct which near the both ends was higher than the middle. It causes the temperature of the motor which near the both ends was lower than the middle part. The maximum temperature rise of the motor appear in the middle of the upper windings, and the specific value was 74K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.