Abstract

As a new analytical method to identify oil spills at sea, the main effect of a polarization measurement system is the scattering polarization information of different measured parts. To improve measurement accuracy, the scattering polarization characteristics of oil film and seawater were observed in this paper. A useful computational model, the scattering polarization coherency matrix (SPCM), was derived, which is a probabilistic mixture of the polarization coherency matrix. Combined with the Fresnel formula, the amplitude ratio and phase retardation were extracted to verify the scientific nature of the physical model. Experiments were performed, and the SPCM of the oil film and seawater were measured. In order to test the practicability of the model, we derived the degree of polarization from the SPCM and used it as the basis for identification of the actual oil spill at sea in the case of sunlight. Research indicated that the path of multiple scattering was in connection with the molecular structure and interactions of the medium. Under different measuring angles, the SPCM of the oil film and seawater have both differences and regularities; the experimental results indicate that it can be used for the rapid detection of an oil spill at sea, and the data are accurate and reliable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call