Abstract

The Carbon Fiber Reinforced Polymer (CFRP)-wrapped steel pipeline system is emerging as an alternative for the repair and long-distance transportation of oil and gas. This system is recognized as a composite material. Under internal pressure, the pipe predominantly undergoes circumferential stretching. This study derives the tensile constitutive model of the steel-CFRP composite material using uniaxial tensile tests and the rule of mixtures. Subsequently, utilizing this newly calibrated constitutive model, a computational model to assess the internal pressure capacity of the steel-carbon fiber composite pipe was established. Finally, a comparison between the theoretical outcomes of the computational model and the actual internal pressure test results revealed a high degree of correlation. This holds substantial significance for the design and practical implementation of this novel composite pipeline system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call