Abstract

The assembled corrugated steel initial support structure is a new prefabricated structure in highway tunnel engineering, achieving a balance between economy and safety. This study proposes a simplified calculation method and elucidates the mechanical mechanisms of assembled corrugated steel initial support structures. Firstly, the stiffness characteristics of corrugated steel plates were studied based on full-scale tests. A general equivalent stiffness coefficient table was established. Numerical simulations of corrugated steel flange joints were conducted to explore their bending mechanical properties. A two-stage rotational stiffness model for corrugated steel flange joints was proposed. Finally, a plane strain-spring simplified calculation method for the assembled corrugated steel initial support structure was developed, and the monitoring data from the Qipanshan Tunnel validated the correctness and reliability of the proposed method. The results demonstrate that (1) the plane strain-spring simplified model consists of the planar strain equivalent calculation method for corrugated steel plates and the two-line stiffness equivalent spring of the corrugated steel flange joint. The simplified model was validated as effective by monitoring data. (2) Corrugated steel plates exhibit two stages under loading, namely gap elimination and elastic stages. The elastic stage stiffness of corrugated steel plates decreases with increasing ratio of depth to pitch (RDP), positively correlating with plate thickness when the RDP exceeds 0.333 and otherwise negatively correlated. (3) Corrugated steel lining flange joints exhibit distinct elastic and plastic stages in their linear moment–rotation curves under loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.